Driver distraction detection and recognition using RGB-D sensor
نویسندگان
چکیده
Driver inattention assessment has become a very active field in intelligent transportation systems. Based on active sensor Kinect and computer vision tools, we have built an efficient module for detecting driver distraction and recognizing the type of distraction. Based on color and depth map data from the Kinect, our system is composed of four sub-modules. We call them eye behavior (detecting gaze and blinking), arm position (is the right arm up, down, right of forward), head orientation, and facial expressions. Each module produces relevant information for assessing driver inattention. They are merged together later on using two different classification strategies: AdaBoost classifier and Hidden Markov Model. Evaluation is done using a driving simulator and 8 drivers of different gender, age and nationality for a total of more than 8 hours of recording. Qualitative and quantitative results show strong and accurate detection and recognition capacity (85% accuracy for the type of distraction and 90% for distraction detection). Moreover, each module is obtained independently and could be used for other types of inference, such as fatigue detection, and could be implemented for real cars systems.
منابع مشابه
Driver Drowsiness Detection by Identification of Yawning and Eye Closure
Today most accidents are caused by drivers’ fatigue, drowsiness and losing attention on the road ahead. In this paper, a system is introduced, using RGB-D cameras to automatically identify drowsiness and give warning. In this system two important modules have been utilized simultaneously to identify the state of driver’s mouth and eyes for detecting drowsiness. At first, using the depth informa...
متن کاملIn-vehicle Multi-channel Signal Processing and Analysis in UTDrive Project: Driver Behavior Modeling and Active Safety Systems Development
It has been pointed that most of the accidents on the roads are caused by driver faults, inattention and low performance. Therefore, future active safety systems are required to be aware of the driver status to be able to have preventative features. This probe study gives a system structure depending on multi-channel signal processing for three modules: Driver Identification, Route Recognition ...
متن کاملDriver Cognitive Distraction Detection Using Driving Performance Measures
Driver cognitive distraction is a hazard state, which can easily lead to traffic accidents. This study focuses on detecting the driver cognitive distraction state based on driving performance measures. Characteristic parameters could be directly extracted from Controller Area NetworkCANBus data, without depending on other sensors, which improves real-time and robustness performance. Three cogni...
متن کاملDetection and Recognition of Multi-language Traffic Sign Context by Intelligent Driver Assistance Systems
Design of a new intelligent driver assistance system based on traffic sign detection with Persian context is concerned in this paper. The primary aim of this system is to increase the precision of drivers in choosing their path with regard to traffic signs. To achieve this goal, a new framework that implements fuzzy logic was used to detect traffic signs in videos captured along a highway f...
متن کاملHand Gesture Recognition from RGB-D Data using 2D and 3D Convolutional Neural Networks: a comparative study
Despite considerable enhances in recognizing hand gestures from still images, there are still many challenges in the classification of hand gestures in videos. The latter comes with more challenges, including higher computational complexity and arduous task of representing temporal features. Hand movement dynamics, represented by temporal features, have to be extracted by analyzing the total fr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1502.00250 شماره
صفحات -
تاریخ انتشار 2015